KLASIFIKASI KEMATANGAN BUAH NAGA BERDASARKAN FITUR WARNA MENGGUNAKAN ALGORITMA MULTI-CLASS SUPPORT VECTOR MACHINE
DOI:
https://doi.org/10.51401/jinteks.v5i1.2203Keywords:
Dragon Fruit, Image Processing, HSV, Multi-Class SVMAbstract
The classification of dragon fruit maturity directly by farmers has weaknesses because it is influenced by the subjective factors of these farmers such as fatigue and other physical disorders. This causes the farmers' performance to be not optimal and less through so that the maturity classification becomes inconsistent. For this reason, this study aims to automatically classify dragon fruit maturity becomes more effective and efficient because it is carried out with the same and consistent standards even though in large quantities by utilizing image processing. Dragon fruit maturity level will be classified into 3 classes based on the color features HSV, ripe, half-ripe and unripe. The method used to carry out the classification is the Multi-Class SVM. The data used in this study were 105 data consisting of 90 training data and 15 test data. The classification results of dragon fruit maturity using the Multi-Class SVM is 86.67%.
References
C. D. D. Yu and J. F. Villaverde, “Avocado Ripeness Classification Using Graph Neural Network,” in 2022 14th International Conference on Computer and Automation Engineering (ICCAE), Mar. 2022, pp. 74–79. doi: 10.1109/ICCAE55086.2022.9762435.
B. Rodrigues, R. Kansara, S. Singh, D. Save, and S. Parihar, “Ripe-Unripe: Machine Learning based Ripeness Classification,” in 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), May 2021, pp. 1–5. doi: 10.1109/ICICCS51141.2021.9432349.
M. F. Mohamedon, F. Abd Rahman, S. Y. Mohamad, and O. Omran Khalifa, “Banana Ripeness Classification Using Computer Vision-based Mobile Application,” in 2021 8th International Conference on Computer and Communication Engineering (ICCCE), Jun. 2021, pp. 335–338. doi: 10.1109/ICCCE50029.2021.9467225.
J. Pardede, M. G. Husada, A. N. Hermana, and S. A. Rumapea, “Fruit Ripeness Based on RGB, HSV, HSL, L a b Color Feature Using SVM,” in 2019 International Conference of Computer Science and Information Technology (ICoSNIKOM), Nov. 2019, pp. 1–5. doi: 10.1109/ICoSNIKOM48755.2019.9111486.
J. A. M. Galindo, J. E. C. Rosal, and J. F. Villaverde, “Ripeness Classification of Cacao Using Cepstral-Based Statistical Features and Support Vector Machine,” in 2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET), Sep. 2022, pp. 1–5. doi: 10.1109/IICAIET55139.2022.9936807.
E. J. L. Aguilar, G. K. P. Borromeo, and J. Flores Villaverde, “Determination of Pineapple Ripeness Using Support Vector Machine for Philippine Standards,” in 2021 IEEE 7th International Conference on Control Science and Systems Engineering (ICCSSE), Jul. 2021, pp. 283–287. doi: 10.1109/ICCSSE52761.2021.9545163.
I. A. Sabilla, C. S. Wahyuni, C. Fatichah, and D. Herumurti, “Determining Banana Types and Ripeness from Image using Machine Learning Methods,” in 2019 International Conference of Artificial Intelligence and Information Technology (ICAIIT), Mar. 2019, pp. 407–412. doi: 10.1109/ICAIIT.2019.8834490.
H. Azarmdel, A. Jahanbakhshi, S. S. Mohtasebi, and A. R. Muñoz, “Evaluation of image processing technique as an expert system in mulberry fruit grading based on ripeness level using artificial neural networks (ANNs) and support vector machine (SVM),” Postharvest Biol. Technol., vol. 166, p. 111201, Aug. 2020, doi: 10.1016/j.postharvbio.2020.111201.
L. Zhu and P. Spachos, “Support vector machine and YOLO for a mobile food grading system,” Internet Things, vol. 13, p. 100359, Mar. 2021, doi: 10.1016/j.iot.2021.100359.
I. Indrabayu, N. Arifin, and I. S. Areni, “Strawberry Ripeness Classification System Based On Skin Tone Color using Multi-Class Support Vector Machine,” in 2019 International Conference on Information and Communications Technology (ICOIACT), Jul. 2019, pp. 191–195. doi: 10.1109/ICOIACT46704.2019.8938457.
A. Suryadi, M. V. Putri, and E. L. Febrianti, “PENGOLAHAN CITRA DIGITAL DAN LOGIKA FUZZY DALAM IDENTIFIKASI TINGKAT KEMATANGAN BUAH,” J. Sci. Soc. Res., vol. 5, no. 2, p. 187, Jun. 2022, doi: 10.54314/jssr.v5i2.863.
R. Chen, M. Wang, and Y. Lai, “Analysis of the role and robustness of artificial intelligence in commodity image recognition under deep learning neural network,” PLOS ONE, vol. 15, no. 7, p. e0235783, Jul. 2020, doi: 10.1371/journal.pone.0235783.
K. Ayuningsih, “Klasifikasi Citra Makanan menggunakan HSV Color Moment dan Local Binary Pattern dengan Naïve Bayes Classifier,” Universitas Brawijaya, 2018. [Online]. Available: http://repository.ub.ac.id/id/eprint/167137/1/Karunia%20Ayuningsih.pdf
E. Elhariri, N. El-Bendary, A. E. Hassanien, A. Badr, A. M. M. Hussein, and V. Snášel, “Random Forests Based Classification for Crops Ripeness Stages,” in Proceedings of the Fifth International Conference on Innovations in Bio-Inspired Computing and Applications IBICA 2014, Cham, 2014, pp. 205–215. doi: 10.1007/978-3-319-08156-4_21.
D. N. Fitriana and Y. Sibaroni, “Klasifikasi Data Tweet Dengan Menggunakan Metode Klasifikasi Multi-class Support Vector Machine (svm) (studi Kasus?: Pt.kai),” EProceedings Eng., vol. 7, no. 2, Art. no. 2, Aug. 2020, Accessed: Jan. 11, 2023. [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/12746

Published
How to Cite
Issue
Section
Copyright (c) 2023 Ismail, Nurhikma Arifin, Prihastinur

This work is licensed under a Creative Commons Attribution 4.0 International License.