Potensi Coriatin dan Coriamyrtin Helixanthera sessiliflora (Merr.) Denser sebagai Kandidat Obat Penurun Hipertensi; Kajian in silico
Kata Kunci:
antihipertensi, coriamyrtin, coriatin, inhibitor ACE, in silicoAbstrak
Penelitian ini bertujuan untuk mengidentifikasi potensi senyawa bioaktif benalu (Loranthaceae) sebagai kandidat obat hipertensi melalui penghambatan angiotensin converting enzyme secara in silico. Senyawa target Loranthaceae yaitu coriatin dan coriamyrtin diunduh strukturnya dari database PubChem NCBI, selanjutnya protein target hipertensi yaitu angiotensin converting enzyme (ACE) yang diunduh dari protein data bank. Lisinopril digunakan sebagai control pembanding inhibitor ACE. Senyawa target dan lisinopril didocking dengan protein ACE dengan molegro virtual docker versi 5.0 dan divisualisasi dengan PyMol versi 2.3 dan Discovery studio versi 21.1.1. analisis docking menunjukkan senyawa coriatin dan coriamyrtin berikatan dengan protein ACE didaerah yang sama dengan lisinopril, dengan residu yang diikat yaitu HIS353. Selain itu beberapa residu coriatin dan lisinopril juga teridentifikasi sama diantaranya GLN281, HIS383, dan TYR520. Residu sisi aktif coriamyrtin yang teridentifikasi di lisinopril antara lain GLU384, GLU411, HIS513, dan HIS387. Residu sisi aktif yang sama antara senyawa target dan lisinopril mengindikasikan bahwa senyawa coriatin dan coriamyrtin berpotensi sebagai kandidat obat hipertensi seperti lisinopril. Penelitian ini disimpulkan bahwa senyawa coriatin dan coriamyrtin yang terkandung di dalam Loranthaceae berpotensi sebagai kandidat obat hipertensi.
Referensi
Ahmad, H., Khan, H., Haque, S., Ahmad, S., Srivastava, N., & Khan, A. (2023). Angiotensin-Converting Enzyme and Hypertension: A Systemic Analysis of Various ACE Inhibitors, Their Side Effects, and Bioactive Peptides as a Putative Therapy for Hypertension. Journal of the Renin-Angiotensin-Aldosterone System, 2023, 1–9. https://doi.org/10.1155/2023/7890188
Arianti, B. S., Mulyaningsih, T., & Aryanti, E. (2017). IDENTIFIKASI JENIS-JENIS BENALU (LORANTHACEAE) DI RESORT KEMBANG KUNING TAMAN NASIONAL GUNUNG RINJANI LOMBOK TIMUR. BioWallacea Jurnal Ilmiah Ilmu Biologi, 3(1), 50–56.
Bare, Y., Kuki, A. D., Daeng Tiring, S. S. N., Rophi, A. H., Krisnamurti, G. C., & Tirto Sari, D. R. (2020). In Silico Study: Prediction the Potential of Caffeic Acid As ACE inhibitor. El-Hayah, 7(3). https://doi.org/10.18860/elha.v7i3.10053
Bare, Y., Sari, D. R., Rachmad, Y. T., Tiring, S. S. N. D., Rophi, A. H., & Nugraha, F. A. D. (2019). Prediction Potential Chlorogenic Acid As Inhibitor Ace (In Silico Study). Bioscience, 3(2), 197. https://doi.org/10.24036/0201932105856-0-00
Belal, A., Elanany, M. A., Al-Karmalawy, A. A., Elkamhawy, A., Abourehab, M. A. S., Ghamry, H. I., & Mehany, A. B. M. (2023). Design of new captopril mimics as promising ACE inhibitors: ADME, pharmacophore, molecular docking and dynamics simulation with MM-PBSA and PCA calculations. Journal of Taibah University for Science, 17(1), 2210348. https://doi.org/10.1080/16583655.2023.2210348
Bitencourt-Ferreira, G., & De Azevedo, W. F. (2019). Molegro Virtual Docker for Docking. In W. F. De Azevedo (Ed.), Docking Screens for Drug Discovery (Vol. 2053, pp. 149–167). Springer New York. https://doi.org/10.1007/978-1-4939-9752-7_10
Chamata, Y., Watson, K. A., & Jauregi, P. (2020). Whey-Derived Peptides Interactions with ACE by Molecular Docking as a Potential Predictive Tool of Natural ACE Inhibitors. International Journal of Molecular Sciences, 21(3), 864. https://doi.org/10.3390/ijms21030864
Gao, X., Bu, F., Yi, D., Liu, H., Hou, Z., Zhang, C., Wang, C., Lin, J.-M., Dang, Y., & Zhao, Y. (2022). Molecular docking and antihypertensive effects of a novel angiotensin-I converting enzyme inhibitory peptide from yak bone. Frontiers in Nutrition, 9, 993744. https://doi.org/10.3389/fnut.2022.993744
Ko, S.-C., Kim, J.-Y., Lee, J. M., Yim, M.-J., Kim, H.-S., Oh, G.-W., Kim, C. H., Kang, N., Heo, S.-J., Baek, K., & Lee, D.-S. (2023). Angiotensin I-Converting Enzyme (ACE) Inhibition and Molecular Docking Study of Meroterpenoids Isolated from Brown Alga, Sargassum macrocarpum. International Journal of Molecular Sciences, 24(13), 11065. https://doi.org/10.3390/ijms241311065
Liu, C., Yu, Y., Liu, F., & You, L. (2019). Purification and Molecular Docking Study of Angiotensin-I Converting Enzyme (ACE) Inhibitory Peptide from Alcalase Hydrolysate of Hazelnut (<i>Corylus heterophylla</i> Fisch) Protein. Food and Nutrition Sciences, 10(11), 1374–1387. https://doi.org/10.4236/fns.2019.1011098
Mun’im, A., Munadhil, M. A., Puspitasari, N., . A., & Yanuar, A. (2017). ANGIOTENSIN CONVERTING ENZYME INHIBITORY ACTIVITY OF MELINJO (GNETUM GNEMON L.) SEED EXTRACTS AND MOLECULAR DOCKING OF ITS STILBENE CONSTITUENTS. Asian Journal of Pharmaceutical and Clinical Research, 10(3), 243. https://doi.org/10.22159/ajpcr.2017.v10i3.16108
Natesh, R., Schwager, S. L. U., Sturrock, E. D., & Acharya, K. R. (2003). Crystal structure of the human angiotensin-converting enzyme–lisinopril complex. Nature, 421(6922), 551–554. https://doi.org/10.1038/nature01370
Nileeka Balasuriya, B. W., & Vasantha Rupasinghe, H. P. (2011). Plant flavonoids as angiotensin converting enzyme inhibitors in regulation of hypertension. Functional Foods in Health and Disease, 1(5), 172. https://doi.org/10.31989/ffhd.v1i5.132
Olvera Lopez, E., Parmar, M., Pendela, V. S., & Terrell, J. M. (2023). Lisinopril. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK482230/
Oparil, S., Acelajado, M. C., Bakris, G. L., Berlowitz, D. R., Cífková, R., Dominiczak, A. F., Grassi, G., Jordan, J., Poulter, N. R., Rodgers, A., & Whelton, P. K. (2018). Hypertension. Nature Reviews. Disease Primers, 4, 18014. https://doi.org/10.1038/nrdp.2018.14
Saputri, S., Sjakoer, N. A., & Mubarakati, N. (2021). Effects of Mango Mistletoe (Dendrophthoe pentandra L. Miq) Extracts on Brain in Hypertensive Rats Treated with Deoxycorticosterone Acetate (DOCA)-Salt. JSMARTech, 2(2), 055–060. https://doi.org/10.21776/ub.jsmartech.2021.002.02.55
Sari, D., Cairns, J., Safitri, A., & Fatchiyah, F. (2019). Virtual Prediction of the Delphinidin-3-O-glucoside and Peonidin-3-O-glucoside as Anti-inflammatory of TNF- and #945; Signaling. Acta Informatica Medica, 27(3), 152. https://doi.org/10.5455/aim.2019.27.152-157
Sari, D. R. T. (2020). Anti-Apoptotic Activity of Anthocyanins has Potential to inhibit Caspase-3 Signaling. Journal of Tropical Life Science, 10(1). https://doi.org/10.11594/jtls.10.01.03
Sari, D. R. T., & Krisnamurti, G. C. (2021). 1-dehydrogingerdione, Senyawa volatil jahe sebagai agen sedatif subtitutif ?-aminobutyrate (GABA); Kajian biokomputasi. Prosiding Seminar Nasional Biologi, 7(1), 389–395.
Sari, D. R. T., & Krisnamurti, G. C. (2022). In Silico Repositioning Strategies of Theobromine and Caffeine for Psychiatric and Neurological Disorders. Journal Proceeding International Conference on Religion, Science and Education, 1, 685–692.
Suhandi, C., Bagaskhara, P. P., Muchtaridi, M., Syafitri, R. I. P., Amalia, S. H., Azzahra, A. B., & Citraloka, Z. G. (2022). In Silico Study of Compound Extract In Soursop Plant (Annona muricata) as Ace Inhibitor In Hypertension Disease. Indonesian Journal of Computational Biology (IJCB), 1(1), 7. https://doi.org/10.24198/ijcb.v1i1.40533
Tiffani, & Santosa, E. (2018). Sebaran Benalu Famili Loranthaceae di Kebun Raya Bogor dan Implikasinya bagi Program Pengendalian. Institut Pertanian Bogor (IPB).
Xie, F., Van Bocxlaer, J., & Vermeulen, A. (2021). Physiologically based pharmacokinetic modelling of lisinopril in children: A case story of angiotensin converting enzyme inhibitors. British Journal of Clinical Pharmacology, 87(3), 1203–1214. https://doi.org/10.1111/bcp.14492