PERAMALAN PRODUKSI AIR BERSIH OLEH PERUSAHAAN DAERAH AIR MINUM BATULANTEH KABUPATEN SUMBAWA MENGGUNAKAN METODE REGRESI

Authors

  • Koko Hermanto Universitas Teknologi Sumbawa
  • Silvia Firda Utami Universitas Teknologi Sumbawa
  • Ryan Suarantalla Universitas Teknologi Sumbawa

Keywords:

Forecasting, Linear Regression, Quadratic Regression, Cubic Regression, PDAM

Abstract

Water is one of the natural resources which is a basic human need that cannot
separated every day, therefore good quality water that is suitable for use is needed. Company
Drinking Water (PDAM) Sumbawa Besar is the only company that supplies clean water
for the needs of residents of the city of Sumbawa Besar and its surroundings. One of the obstacles for the company
in meeting the need for clean water is the limited debit of the available water supply considering that
The city of Sumbawa Besar is categorized as a drought area. Therefore it is necessary to plan
to manage the available water resources. Based on this, the researchers provide
the future use of clean water produced by PDAM is useful
become material for community planning in using groundwater. In this study, the method
used to determine or predict the use of clean water produced by PDAM
Bantulante is a regression method, namely the linear regression method, the cudratic regression method or the method
cubic regression. Determination of the best method of the three methods is determined by the value of R square
The largest, from the analysis using SPSS, it is found that the cubic regression method has an R square value
the largest compared to the other two methods, where the R square value is 0.572. Forecasting
Using the selected method, the highest water usage was obtained in January, namely
as much as 402,908.60 m3
and the lowest was in December, namely 354,747.60 m3
. Where is the level
the accuracy of the forecasting value is 99.99%.

References

Firmanila, U. D. (2016). Keterkaitan

Karakteristik Wilayah Terhadap

Distribusi Air Bersih Di Perkotaan

Sumbawa Besar [Institut Teknologi

Sepuluh November].

http://repository.its.ac.id/48733/1/3610

-Undergraduate-Theses.pdf

Halin, H., Wijaya, H., & Yusilpi, R. (2017).

Pengaruh Harga Jual Kaca Patri Jenis

Silver Terhadap Nilai Penjualan Pada

Cv. Karunia Kaca Palembang Tahun

-2015. Jurnal Ecoment Global,

(2), 49.

https://doi.org/10.35908/jeg.v2i2.251

Hermanto, K., & Rizqika, F. (2019). Metode

Regresi yang Tepat Untuk Meramalkan

Permintaan Minyak Solar di

Kabupaten Sumbawa. Unisda Journal

of Mathematics and Computer Science,

(1), 17–24.

Hermanto, K., & Utami, S. F. (2019). Peramalan

Kebutuhan Air Untuk Penyiapan Lahan

Menggunakan Metode Siklis (Studi

Kasus Daerah Irigasi Bendungan Batu

Bulan Kec. Moyo Hulu). Unisda

Journal of Mathematics and

Computational Science (UJMC), 5(1),

–34. http://ejurnal.unisda.ac.id/index.php/ujmc/articl

e/view/1480

Hermawan, D. D., Widada, B., & Vulandari, R.

T. (2018). Perbandingan Hasil Panen

Padi Dipengaruhi Rata-Rata Curah

Hujan Atau Irigasi Dengan Model

Regresi Nonlinier Kubik Dikabupaten

Sukoharjo. Jurnal Teknologi Informasi

Dan Komunikasi (TIKomSiN), 6(1), 6–

https://doi.org/10.30646/tikomsin.v6i1.3

Hudaningsih, N., Utami, S. F., & Jabbar, W. A.

A. (2020). Perbandingan Peramalan

Penjualan Produk Aknil PT. Sunthi

Sepuri Menggunakan Metode Single

Moving Average dan Single Exponential

Smoothing. Jinteks, 2(1), 15–22.

Nafidah, Q. A., Astutik, S., Si, S., Si, M.,

Wuryantini, S., Statistika, J., Brawijaya,

U., Tanaman, P., Penelitian, B., & Jeruk,

T. (2020). Penerapan Analisis Regresi

Nonlinear Kuadratik Terhadap

Pengujian Toksisitas ( LD 50 )

Biopestisida Crude Extract Tembakau

Pada Kutu Daun Hijau ( Aphis Gossypii

). Prosiding Seminar Nasional Inegrasi

Matematika Dan Nilai Islmi, 3(1), 430–

Rozi, F., & Sukmana, F. (2016). Metode Siklis

Dan Adaptive Neuro Fuzzy Inference

System Untuk Peramalan Cuaca. JIPI

(Jurnal Ilmiah Penelitian Dan

Pembelajaran Informatika), 1(1), 7–13.

https://doi.org/10.29100/jipi.v1i01.20

Said, N. I., & Widayat, W. (2000).

Pemasyarakatan Unit Pengolahan Air

Siap Minum. Teknologi Lingkungan,

(3), 233–246.

Santosa, R. G. (2013). Aljabar Linear Dasar. In J.

Widiyatmoko (Ed.), ANDI (1st ed.).

Utami, S. F., Arisma, S. Y., Hermanto, K., &

Ruskartina, E. (2020). Peramalan

Jumlah Penjualan Sepeda Motor Menggunakan Metode Time Series

Studi Kasus?: Dealer Motor Nusantara

Surya Sakti (NSS) Sumbawa. Hexagon,

(2), 33–41.

Published

2020-08-29

Issue

Section

Articles