SIMULASI DROPLET UNTUK PENDINGINAN ALAT TEKNOLOGI INFORMASI DENGAN METODE LATTICE-BOLTZMANN

MODELING MATEMATIS DAN SIMULASI DROPLET UNTUK PENDINGINAN ALAT-ALAT TEKNOLOGI INFORMASI DAN KOMPUTER DENGAN METODE LATTICE-BOLTZMANN

Authors

  • Wiji Nurastuti Kumara Ari Yuana
  • Kumara Ari Yuana Universitas Amikom Yogyakarta

DOI:

https://doi.org/10.51401/jinteks.v3i3.1039

Keywords:

Kata kunci : Modeling Matematis, Simulasi Droplet, Metode Latice-Boltzman

Abstract

Abstrak : Kebutuhan inovasi skema pendinginan untuk pemeliharaan perangkat elektronik dengan suhu aman dibawah batas yang telah ditentukan oleh batasan material dan kendala realibilitas yang terkait pada miniaturisasi microchip yang agresif pada komponen elektronik. Pergeseran dari ketergantungan pada sistem berpendingin kipas menjadi ke skema pendinginan yang memanfaatkan pendingin cairan dielektrik menggunakan berbagai skema pendinginan fase tunggal. Perekayasa (engineer) sistem pendingin memusatkan perhatian pada skema pendinginan dua fase, untuk memanfaatkan kedua system pendingin. Sifat yang harus dimiliki perekayasa sistem pendingin ini yaitu konveksi fluida dan panas laten untuk memindahkan jumlah kalor yang jauh lebih besar dari pada skema fase tunggal, sambil mempertahankan suhu perangkat yang lebih rendah. Beberapa skema pendingin cairan dua fase telah direkomendasikan untuk menghilangkan fluks kalor tinggi dari perangkat yang digunakan diaplikasi. Momentum droplet memungkinkan cairan menembus penghalang uap yang dibuat oleh gelembung nukleasi dan secara lebih efektif mengisi kembali permukaan, keduanya sangat bermanfaat untuk pendinginan fluks tinggi. Pada model dan simulasi pengembangan droplet menggunakan metode LBM multi fase, parameter penting yang selalu didapatkan adalah arus semu maksimum (maximum spurious currents) yang menetukan stabilitas komputasi.

Kata kunci : Modeling Matematis, Simulasi Droplet, Metode Latice-Boltzman

 

Abstract: The need for innovative cooling schemes for maintaining electronic devices with safe temperatures below predetermined limits by material limitations and reliability constraints associated with aggressive microchip miniaturization of electronic components. Shifting from reliance on fan-cooled systems to cooling schemes that utilize dielectric liquid cooling using a variety of single-phase cooling schemes. The cooling system engineer focuses on two-phase cooling schemes, to take advantage of both cooling systems. Properties that these cooling system engineers must possess are fluid convection and latent heat to transfer a much greater amount of heat than a single-phase scheme, while maintaining a lower device temperature. Several two-phase liquid cooling schemes have been recommended to remove the high heat flux from the apparatus used in the application. The droplet momentum allows the liquid to penetrate the vapor barrier created by the nucleation bubbles and more effectively replenish the surface, both of which are very beneficial for high flux cooling. In droplet development models and simulations using the multi-phase LBM method, an important parameter that is always obtained is the maximum spurious currents which determine the computational stability.

Keywords: Mathematical Modeling, Droplet Simulation, Latice-Boltzman Method

 

References

T.M. Anderson, I. Mudawar, Microelectronic cooling by enhanced pool boiling of a dielectric fluorocarbon liquid, J. Heat Transf. – Trans. ASME 111 (1989) 752–759.

I. Mudawar, Recent advances in high-flux, two-phase thermal management, J. Therm. Sci. Eng. Appl. 5 (2013) 021012.

I. Mudawar, Assessment of high-heat-flux thermal management schemes, IEEE Trans. Compon. Package. Technol. 24 (2001) 122–141.

I. Mudawar, D. Bharathan, K. Kelly, S. Narumanchi, Two-phase spray cooling of hybrid vehicle electronics, IEEE Trans. Compon. Package. Technol. 32 (2009) 501–512.

H. Bostanci, D. Van Ee, B.A. Saarloos, D.P. Rini, L.C. Chow, Spray cooling of power electronics using high temperature coolant and enhanced surface, in IEEE Vehicle Power and Propulsion Conference, IEEE, Dearborn, USA, 2009, pp. 609–613.

H. Bostanci, D. Van Ee, B.A. Saarloos, D.P. Rini, L.C. Chow, Thermal management of power inverter modules at high fluxes via two-phase spray cooling, IEEE Trans. Compon. Packag. Manuf. Technol. 2 (2012) 1480–1485.

M.B. Bowers, I. Mudawar, Two-phase electronic cooling using mini-channel and micro-channel heat sinks: part 2-flow rate and pressure drop constraints, J. Electron. Packag. – Trans. ASME 116 (1994) 298 305.

W. Qu, I. Mudawar, Measurement and prediction of pressure drop in two-phase micro-channel heat sinks, Int. J. Heat Mass Transf. 46 (2003) 2737– 2753.

M. Monde, H. Kusuda, H. Uehara, Burnout heat flux in saturated forced convection boiling with two or more impinging jets, Trans. JSME 46 (1980) 1834 1843.

C.H. Amon, S.-C. Yao, C.-F. Wu, C.-C. Hsieh, Microelectromechanical system based evaporative thermal management of high heat flux electronics, J. Heat Transfer – Trans. ASME 127 (2005) 66–75.

J. Yang, M.R. Pais, L.C. Chow, Critical heat flux limits in secondary gas atomized liquid spray cooling, Exp. Heat Transf. 6 (1993) 55–67.

D.D. Hall, I. Mudawar, Experimental and numerical study of quenching complex-shaped metallic alloys with multiple, overlapping sprays, Int. J. Heat Mass Transf. 38 (1995) 1201–1216.

C. Si, S. Shao, C. Tian, H. Xu, Development and experimental investigation of a novel spray cooling system integrated into refrigeration circuit, Appl. Therm. Eng. 33 (2012) 246–252.

H. Xu, C. Si, S. Shao, C. Tian, Experimental investigation on heat transfer of spray cooling with isobutane (R600a), Int. J. Therm. Sci. 86 (2014) 2127.

K. A. Yuana, “Modelling and Simulation of Floating Droplet Use Multi-phase Lattice Boltzmann Method ( LBM )”, International Conference on Information and Communications Technology (ICOIACT), 2019

K. A. Yuana and E. P. Budiana, “Modeling and simulation of droplet wettability using multiphase Lattice Boltzmann method ( LBM ),” AIP Conference Proceedings 2192, 070002 (2019) vol.070002, no.December, 2019.

P. Yuan and L. Schaefer, “Equations of state in a lattice Boltzmann model,” Phys. Fluids, vol. 18, no. 4, 2006

Published

2021-08-29

Issue

Section

Articles