IMPLEMENTATION OF MONK FRUIT Maturity LEVEL USING GRAY-LEVEL CO-OCCURRENCE MATRIX (GLCM) AND SUPPORT VECTOR MACHINE (SVM) EXTRACTION
DOI:
https://doi.org/10.51401/jinteks.v5i3.2512Keywords:
Implementasi, GLCM, SVM, MonkAbstract
Monk fruit is a fruit from China which is believed to have many benefits and properties. This fruit, which belongs to the pumpkin family, is often used as a sweetener, a good substitute for sugar, for dieters and diabetics. It has a slightly oval round shape with a green skin color. Each fruit has characteristics that are used to determine its quality. However, fresh monk fruit is rarely found in the market because it spoils quickly. Information on the maturity level of Monk fruit is needed by the agricultural industry in general. one of the obstacles is helping which is still done manually. Therefore researchers will use GLCM and SVM calculations. At the GLCM calculation stage, a matrix is ??formed with angles of 0°, 45°, 90° and 135°. The feature values ??extracted are contrast, homogeneity, energy and correlation. And SVM is one of the methods used in digital image processing to extract features. This study used 991 Monk fruit datasets. There are two classes, "Mature" consists of 635 images and class "Immature" contains 356 images. Managed to get the highest accuracy on the C50, reaching 89%.
References
M. Novan, I. Sumampouw, and G. Undap, “Implementasi Pembangunan Infrastruktur Desa Dalam Penggunaan Dana Desa Tahun 2017 (Studi) Desa Ongkaw Ii Kecamatan Sinonsayang Kabupaten Minahasa Selatan,” J. Eksek., vol. 1, no. 1, pp. 1–11, 2018, [Online]. Available: https://ejournal.unsrat.ac.id/index.php/jurnaleksekutif/article/view/21950
R. U. Marsal, F. Arnia, and R. Adriman, “Enkripsi Dan Dekripsi Citra Menggunakan Modifikasi Algoritma Vigenere Cipher,” KITEKTRO J. Online Tek. Elektro, vol. 3, no. 3, pp. 6–10, 2018.
T. Firaz, B. Nusantara, R. D. Atmaja, F. T. Elektro, and U. Telkom, “Klasifikasi Jenis Kulit Wajah Pria Berdasarkan Tekstur Menggunakan Metode Gray Level Co-Occurrence Matrix (GLCM) dan Support Vector Machine (SVM),” eProceedings Eng., vol. 5, no. 2, pp. 2130–2137, 2018.
A. W. Bawono, B. Hidayat, and S. Nugroho, “Deteksi Area Hutan Berbasis Citra Google Earth Menggunakan Metode Grey-level-co-occurrence Matrix (glcm) Dan Support Vector Machine (svm).,” eProceedings Eng., vol. 6, no. 1, pp. 524–530, 2019, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/8702
R. Anggraini, “Klasifikasi Jenis Kualitas Keju Dengan Menggunakan Metode Gray Level Co-occurrence Matrix (GLCM) dan Support Vector Machine (SVM) Pada Citra Digital,” e-Proceeding Eng., vol. 4, no. 2, pp. 2035–2042, 2017.
W. Hidayat, M. Ardiansyah, and A. Setyanto, “Pengaruh Algoritma ADASYN dan SMOTE terhadap Performa Support Vector Machine pada Ketidakseimbangan Dataset Airbnb,” Edumatic J. Pendidik. Inform., vol. 5, no. 1, pp. 11–20, 2021, doi: 10.29408/edumatic.v5i1.3125.
J. Algoritme et al., “Identifikasi Cacat Pada Kayu Menggunakan Fitur GLCM Dengan Metode SVM,” vol. 3, no. 1, pp. 22–32, 2022.
Y. D. Pristanti, P. Mudjirahardjo, and A. Basuki, “Identifikasi Tanda Tangan dengan Ekstraksi Ciri GLCM dan LBP,” J. EECCIS, vol. 13, no. 1, pp. 6–10, 2019.
I. Monika Parapat and M. Tanzil Furqon, “Penerapan Metode Support Vector Machine (SVM) Pada Klasifikasi Penyimpangan Tumbuh Kembang Anak,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 10, pp. 3163–3169, 2018, [Online]. Available: http://j-ptiik.ub.ac.id
D. A. P. Alinur, Sri Lestari, D. I. Mulyana, and W. Saputro, “DSS Sistem Pendukung Keputusan Penilaian Kinerja Guru Terbaik pada TK IT AN-NUR Menggunakan Metode Graphic Rating Scales,” J-ICOM - J. Inform. dan Teknol. Komput., vol. 2, no. 2, pp. 57–61, 2021, doi: 10.33059/j-icom.v2i2.3990.
Published
How to Cite
Issue
Section
Copyright (c) 2023 Dadang Iskandar Mulyana, Dewi Riyanti Wibowo
This work is licensed under a Creative Commons Attribution 4.0 International License.