PENERAPAN DATA MINING UNTUK KLASIFIKASI PENGANGKATAN KARYAWAN MENGGUNAKAN ALGORITMA K-MEANS

Authors

  • Mudakir Universitas Pelita Bangsa
  • Ahmad Turmudi Zy Universitas Pelita Bangsa
  • Aswan S. Sunge Universitas Pelita Bangsa

DOI:

https://doi.org/10.51401/jinteks.v5i3.3369

Keywords:

employees, classification, data mining, clustering, k-means

Abstract

In this ever-evolving digital era, technology has become one of the main drivers of innovation, efficiency and competitive advantage for companies in various sectors. Appointment of prospective employees is an agenda carried out by the company where for a contract employee who has served during the contract agreement period. PT. Karya Bahana Unigam, which is engaged in the automotive sector, has approximately 500 employees, so it is difficult for the company to carry out the selection process for hiring employees who are still eligible and meet the requirements. K-Means is a data clustering method that tries to partition existing data into one or more clusters or groups. K-Means is used to group employee data based on certain criteria, while the Davies Bouldin Index is used to measure the quality of the clustering results. Of the 128 employee assessment datasets, tests were carried out by determining 2 clusters and validation was tested with the Davies Bouldin Index. And the resulting -2,803. Based on the results obtained, it shows that the k-means algorithm can be implemented in grouping for hiring employees with fairly good validation results.

References

R. Agnes and P. Pendahuluan, “TRANSFORMASI DIGITAL DI PT BANK CENTRAL ASIA: STUDI KASUS MENUJU LAYANAN PERBANKAN MASA DEPAN.”

R. N. Taroreh and Y. Uhing, “FAKTOR-FAKTOR LOYALITAS PEGAWAI DI DINAS PENDIDIKAN DAERAH PROVINSI SULAWESI UTARA,” 671 Jurnal EMBA, vol. 7, no. 1, pp. 671–680, 2019.

G. S. Harland Goni Wilfried Manoppo Joula J Rogahang Program Studi Administrasi Bisnis, “Pengaruh Motivasi Kerja terhadap Peningkatan Kinerja Karyawan pada PT. Bank Rakyat Indonesia Cabang Tahuna,” 2021.

T. S. Kepangkatan, D. Pensiun, B. Daryono, and M. Arifin, “ADMINISTRASI KENAIKAN PANGKAT PEGAWAI NEGERI SIPIL KEMENTERIAN HUKUM DAN HAK ASASI MANUSIA BADAN PENGEMBANGAN SUMBER DAYA MANUSIA HUKUM DAN HAK ASASI MANUSIA KEMENTERIAN HUKUM DAN HAK ASASI MANUSIA REPUBLIK INDONESIA 2020.”

S. Asyuti and A. A. Setyawan, “DATA MINING DALAM PENGGUNAAN PRESENSI KARYAWAN DENGA CLUSTER MEANS,” 2023.

A. upi Fitriyadi, “Analisis Algoritma K-Means dan K-Medoids Untuk Clustering Data Kinerja Karyawan Pada Perusahaan Perumahan Nasional,” KILAT, vol. 10, no. 1, pp. 157–168, Apr. 2021, doi: 10.33322/kilat.v10i1.1174.

K. Algoritma and K.-M. . ………………………………………………………………novita Lestari, “KOMPARASI ALGORITMA K-MEANS DAN K-MEDOIDS UNTUK MENANGANI STRATEGI PROMOSI DI POLITEKNIK TEDC BANDUNG,” 2020.

Y. Putri Santoso and dan Halim Agung, “Implementasi Metode K-Means Clustering pada Sistem Rekomendasi Dosen Tetap Berdasarkan Penilaian Dosen,” vol. 3, no. 4, pp. 2622–4615, 2018, [Online]. Available: http://openjournal.unpam.ac.id/index.php/informatika

H. Dhika and F. Destiawati, Penerapan Algoritma C45 untuk Penilaian Karyawan pada Restoran Cepat Saji. 2017.

O.?: Fitria, R. Abstrak, K. Kunci, and P. Karyawan, “Analisis Algoritma C4.5 Untuk Pengangkatan Karyawan Tetap Studi Kasus PT Citra Abadi Sejati Bogor,” 2016.

Published

2023-08-18

How to Cite

[1]
Mudakir, Ahmad Turmudi Zy, and Aswan S. Sunge, “PENERAPAN DATA MINING UNTUK KLASIFIKASI PENGANGKATAN KARYAWAN MENGGUNAKAN ALGORITMA K-MEANS”, JINTEKS, vol. 5, no. 3, pp. 489-497, Aug. 2023.

Issue

Section

Articles