Jurnal Industri&Teknologi Samawa

Email: jurnal.jitsa@uts.ac.id

Volume 6 (2) Agustus 2025 Halaman 179–185 E-ISSN : 2723-8687

P-ISSN: 2775-3158

# Penerapan Metode Moving Average, Exponential Smoothing, dan Linear Regression dalam Peramalan Jumlah Produksi Okky Koko Drink Leci pada PT. XYZ

# Ahmad Sawal<sup>1</sup>, Nurulinzany<sup>2\*</sup>, Dirayati Jamaluddin<sup>3</sup>

<sup>1,2,3</sup>Teknik Industri Agro, Politeknik ATI Makassar, Sulawesi Selatan, Indonesia Email: <sup>1</sup> sawal@atim.ac.id, <sup>2</sup> nurul.inzany@atim.ac.id, <sup>3</sup> dirayati22@gmail.com

## INFO ARTIKEL

Riwayat Artikel

Diterima: 26/06/2025

Disetujui: 22/07/2025

#### Abstrak

PT. XYZ merupakan salah satu perusahaan bergerak dalam bidang industri pembuatan minuman ringan. Salah satu produknya adalah Okky Koko Drink Leci. Kapasitas produksi PT. XYZ 6.000 dus dalam shift. Permasalahan yang sering terjadi pada PT. XYZ adalah ketidaksesuaian antara rencana kerja dan anggaran perusahaan (RKAP), produksi yang telah ditentukan di awal tahun berdasarkan rilis data aktual. Sehingga perencanaan produksi yang selama ini dilakukan oleh PPIC dirasa kurang valid, karena hanya berdasarkan perkiraan data historis. Berdasarkan hasil penelitian yang telah dilakukan dengan menentukan pola data menggunakan aplikasi eviews dengan menggunakan uji Augmented Dickey Fuller (ADF) sehingga diperoleh pola data tren dan metode yang digunakan adalah Moving Average, Exponential Smoothing dan Linear Regression. Menggunakan konstanta pemulusan dengan nilai M=2-9 pada Moving Average, α yang digunakan pada Exponential Smoothing 0,1-0,9 dan x=2 pada Linear Regression. Metode yang memiliki tingkat kesalahan peramalan (error) yang paling kecil adalah metode Exponential Smoothing dengan nilai adalah  $\alpha$ =0.8, karena memiliki nilai MAD sebesar 29.931.92, nilai MSE sebesar 1.328.504.000 dan nilai MAPE sebesar 0,27% dengan nilai peramalan untuk periode selanjutnya adalah 160.269. Sehingga α=0,8 terbaik untuk peramalkan Okky Koko Drink Leci di PT. XYZ

Kata Kunci: Peramalan, Rencana Produksi, Moving Average, Exponential Smoothing, Linear Regression, Okky Koko Drink Leci.

#### Abstract

PT. XYZ is a company engaged in the soft drink manufacturing industry. One of its products is Okky Koko Drink Lychee. The production capacity of PT. XYZ is 6,000 boxes per shift. The problem that often occurs at PT. XYZ is the discrepancy between the company's work plan and budget (RKAP), production that has been determined at the beginning of the year based on actual data releases. So that the production planning that has been carried out by PPIC is considered less valid, because it is only based on historical data estimates. Based on the results of the study that has been carried out by determining data patterns using the eviews application using the Augmented Dickey Fuller (ADF) test, a trend data pattern is obtained and the methods used are Moving Average, Exponential Smoothing and Linear Regression. Using a smoothing constant with a value of M = 2-9 on the Moving Average,  $\alpha$  used in Exponential Smoothing 0.1-

Email: jurnal.jitsa@uts.ac.id

Volume 6 (2) Agustus 2025 Halaman 179–185 E-ISSN : 2723-8687 P-ISSN : 2775-3158

0.9 and x=2 on Linear Regression. The method that has the smallest level of forecasting error is the Exponential Smoothing method with a value of  $\alpha=0.8$ , because it has a MAD value of 29,931.92, an MSE value of 1,328,504,000 and a MAPE value of 0.27% with a forecast value for the next period of 160,269. So  $\alpha=0.8$  is the best for forecasting Okky Koko Drink Lychee at PT. XYZ

**Keywords:** Forecasting, production planning, Moving Average, Exponential Smoothing, Okky Koko Drink Lychee.

#### I. PENDAHULUAN

Penjualan atau pendistribusian produk yang selalu meningkat merupakan hal yang selalu ingin dicapai suatu industri (Wardah & Iskandar, 2016). Persediaan berpengaruh terhadap pemenuhan permintaan suatu industri (Situmeang et al., 2025). Kunci bagi industri untuk tetap bertahan dan berkembang adalah meningkatkan strategi produksi dengan memperbaiki perencanaan dan pengendalian produksi (Audinasyah & Solehudin, 2024). Penyusunan strategi produksi dapat menjamin kapasitas produksi untuk memenuhi perkiraan permintaan (Saptaria & Nurhidayati, 2017). Keterlambatan pemenuhan permintaan dapat disebabkan oleh kesalahan dalam penentuan jumlah produksi (Audinasyah & Solehudin, 2024). Sehingga diperlukan salah satu metode pada sistem pendukung keputusan yaitu dengan cara peramalan atau *forecasting* (Rodiah & Yunita, 2022).

Metode peramalan digunakan untuk memperkirakan suatu nilai dimasa yang akan datang dengan berdasarkan pada data yang telah diperoleh di masa lalu (Wardah & Iskandar, 2016). Dengan melakukan peramalan dapat dilakukan pengambilan keputusan berdasarkan apa yang telah terjadi sebelumnya (Ruspendi et al., 2024). Peramalan dan perencanaan menjadi salah satu tolak ukur bagi kegiatan operasional suatu industri agar dapat diketahui dan dikendalikan kearah yang sesuai terhadap kemungkinan penyimpangan yang terjadi dalam operasional produksi (Iswandari et al., 2021). Penggunaan metode peramalan yang akurat sangat penting untuk melakukan perencanaan produksi (Kusumawardani et al., 2019). Untuk memperoleh hasil yang akurat peramalan penjualan dapat dilakukan dengan metode-metode tertentu (Jurjani et al., 2024). Metode regresi, *moving average* dan *exponensial smooting* dapat digunakan untuk melakukan peramalan (Hermanto & Rizqika, 2019, Hudaningsih dkk, 2020 dalam (Hermanto et al., 2020).

PT. XYZ merupakan salah satu industri yang bergerak dalam bidang industri pembuatan minuman ringan, salah satu produksinya adalah Okky Koko Drink Leci. Permasalahan pada PT. XYZ adalah ketidaksesuaian antara rencana kerja dan anggaran perusahaan (RKAP), sehingga rencana yang ditetapkan memungkinkan terjadinya perbedaan yang signifikan antara RKAP dengan rilis aktual atau permintaan yang ada. Terkait hal tersebut perusahaan seringkali tidak dapat memenuhi permintaan konsumen, dimana fluktuasi permintaan terjadi akibat kebutuhan konsumen yang berbeda di setiap daerah.

Pada tahun 2022 terdapat 10 bulan yang tidak mencapai target produksi, sedangkan pada tahun 2023 terdapat 7 bulan yang tidak mencapai target produksi sehingga tidak dapat memenuhi permintaan konsumen. Oleh karena itu diperlukan adanya perencanaan yang baik pada PT. XYZ dalam menentukan produksi Okky Koko Drink Leci. Peramalan permintaan dapat mengidentifikasi naik turunnya permintaan pasar dan meminimalisir kemungkinan terjadinya produksi berlebih.

#### II. METODE

Penelitian ini dilakukan di PT. XYZ, mulai 19 Juni 2023 s/d 1 Mei 2024. Metode penelitian adalah metode kuantitatif, yaitu penggambaran objek yang diteliti dengan menggunakan data primer dan sekunder dalam penelitian sebagai landasan dalam penulisan.

Data yang diperoleh kemudian diamati dan diolah untuk mendapatkan hasil yang diinginkan, dan adapun tahapan analisa pengolahan data yaitu:

- 1. Menentukan peramalan kebutuhan Okky Koko Drink Leci untuk periode selanjutnya.
- 2. Menentukan kriteria pengambilan keputusan yaitu:
  - a. Jika nilai mutlak statistik-t > statistik uji ADF maka tolak H<sub>0</sub> dengan kata lain data stasioner.

Halaman 179–185 E-ISSN : 2723-8687 P-ISSN : 2775-3158

- b. Jika nilai mutlak statistik-t < statistik uji ADF maka terima H<sub>0</sub> dengan kata lain data tidak stasioner.
- 3. Menghitung jumlah peramalan produksi Okky Koko Drink Leci dengan menggunakan metode peramalan:

a. Moving Average

$$F_{T+k} = M_T \tag{1}$$

$$M_{T+1} = M_k + d_{T+1} - d_{T-N+1}$$
 (2)

b. Exponential Smoothing

$$Ft = Ft - 1 + a(At - 1 - Ft - 1)$$
 (3)

c. Linear Regression

$$Y = a + bX \tag{4}$$

- 4. Menghitung kesalahan peramalan dengan *Mean absolute Deviation* (MAD), *Mean Squared Error* (MSE) dan *Mean Absolute Percentage Error* (MAPE).
- 5. Menentukan konstanta pemulusan dengan nilai M=2 M=9 pada *Moving Average*, α yang digunakan ada *exponnetial Smoothing* 0,5 0,9 dan x=2 pada *Linear Regression*.

## III. HASIL DAN PEMBAHASAN

Berikut data yang diperoleh dari PT. XYZ. Mulai dari periode 2022 dan 2023, dimana 1 dus berisi 24 pcs Okky Koko Drink Leci, diperoleh data produksi sebagai berikut:

Tabel 1. Data Produksi dan Permintaan Okky Koko Drink Leci

| Tahun | Bulan     | Jumlah Produksi<br>(Dus) | Jumlah<br>Permintaan<br>(Dus) | Kekurangan<br>Produksi |  |
|-------|-----------|--------------------------|-------------------------------|------------------------|--|
| 2022  | Januari   | 144.135                  | 176.101                       | - 31.966               |  |
| 2022  | Februari  | 120.913                  | 129.907                       | - 8.994                |  |
| 2022  | Maret     | 169.287                  | 175.125                       | - 5.838                |  |
| 2022  | April     | 100.930                  | 144.877                       | - 43.947               |  |
| 2022  | Mei       | 181.935                  | 192.543                       | - 10.608               |  |
| 2022  | Juni      | 202.006                  | 202.225                       | - 219                  |  |
| 2022  | Juli      | 176.403                  | 190.757                       | - 14.354               |  |
| 2022  | Agustus   | 134.766                  | 104.711                       | 30.055                 |  |
| 2022  | September | 43.418                   | 96.980                        | - 53.562               |  |
| 2022  | Oktober   | 58.159                   | 54.950                        | 3.209                  |  |
| 2022  | November  | 22.430                   | 64.939                        | - 42.509               |  |
| 2022  | Desember  | 74.005                   | 78.019                        | - 4.014                |  |
| 2023  | Januari   | 70.563                   | 70.781                        | - 218                  |  |
| 2023  | Februari  | 104.796                  | 100.607                       | 4.189                  |  |
| 2023  | Maret     | 117.955                  | 67.875                        | 50.080                 |  |
| 2023  | April     | 53.067                   | 58.844                        | - 5.777                |  |
| 2023  | Mei       | 75.497                   | 134.324                       | - 58.827               |  |
| 2023  | Juni      | 31.303                   | 145.220                       | - 113.917              |  |
| 2023  | Juli      | 179.326                  | 113.450                       | 65.876                 |  |
| 2023  | Agustus   | 114.657                  | 84.837                        | 29.820                 |  |


Sumber: PT. XYZ

Berdasarkan data produksi, maka dapat dilihat bentuk grafik seperti pada gambar 1 berikut:

Email: jurnal.jitsa@uts.ac.id

Volume 6 (2) Agustus 2025 Halaman 179–185 E-ISSN : 2723-8687

P-ISSN: 2775-3158



**Gambar 1.** Grafik Permintaan Okky Koko Drink Leci **Sumber:** Pengolahan data

Grafik di atas menunjukkan jumlah permintaan minuman Okky Koko Drink Leci dalam bentuk dus dari bulan Januari 2022 hingga Desember 2023. Permintaan tertinggi terjadi pada bulan Juni 2022 yaitu 202.225 dus. Sedangkan permintaan terendah terjadi pada bulan Oktober 2022 yaitu 54.950 dus. Terdapat tren naik pada permintaan dari bulan Januari hingga Juni, kemudian menurun hingga Oktober, dan naik kembali hingga Desember. Permintaan mengalami fluktuasi sepanjang tahun, dengan permintaan pada bulan tertentu.

Pengolahan data dengan menggunakan aplikasi eviews untuk menganalisis pola data yang sesuai dengan grafik di atas adalah sebagai berikut:

**Tabel 2.** Uji Augmented Dickey Fuller Menggunakan Aplikasi Eviews

|                                        |           | t-Statistic | Prob.* |
|----------------------------------------|-----------|-------------|--------|
| augmented Dickey-Fuller test statistic |           | -1.812279   | 0.6656 |
| Test critical values:                  | 1% level  | -4.416345   |        |
|                                        | 5% level  | -3.622033   |        |
|                                        | 10% level | -3.248592   |        |

\*MacKinnon (1996) one-sided p-values.

Sumber: Pengolahan data

Pada tabel di atas menunjukkan nilai statistik uji *Augmented Dickey Fuller* (ADF) yaitu - 1.812279 lebih besar dibandingkan nilai kritis untuk 1%, 5%, dan 10% level masing-masing adalah - 4.416345, -3.622033, dan -3.248592. Karena nilai mutlak statistik-t < statistik uji ADF maka H<sub>0</sub> terima, artinya, data tidak stasioner. Sehingga bisa disimpulkan bahwa pola data di atas merupakan pola data tren karena menunjukkan perubahan jumlah permintaan Okky Koko Drink Leci seiring waktu. Pola data tren menggunakan metode peramalan yaitu *Moving Average*, *Exponential Smoothing* dan *Linear Regression*.

## 1. Moving Average

Tabel dibawah ini menunjukkan data hasil perhitungan *Forecasting Resault*, dari metode *Moving Average* dengan nilai M=2 menggunakan QM For Windows 3 sebagai berikut:

**Tabel 3.** Data Forecasting Resault Moving Average

| Moving Average M=2            |               |  |  |  |  |
|-------------------------------|---------------|--|--|--|--|
| Measure                       | Value         |  |  |  |  |
| Error Measures                |               |  |  |  |  |
| Bias (Mean Error)             | 614,55        |  |  |  |  |
| MAD (Mean Absolute Deviation) | 30.474,14     |  |  |  |  |
| MSE (Mean Squared Error)      | 1.454.447.000 |  |  |  |  |
| Standard Error (denom=n-2=20) | 39.998,65     |  |  |  |  |
| MAPE (Mean Absolute Percent)  | 0,29          |  |  |  |  |
| Forecast Next period          | 147.405       |  |  |  |  |

Sumber: Pengolahan data

Jurnal Industri&Teknologi Samawa

Email: jurnal.jitsa@uts.ac.id

Volume 6 (2) Agustus 2025 Halaman 179–185 E-ISSN : 2723-8687 P-ISSN : 2775-3158

## 2. Exponential Smoothing

Tabel dibawah ini menunjukkan data hasil perhitungan *Forecasting Resault* dari metode *Exponential Smoothing* dengan nilai  $\alpha$ =0,5 menggunakan QM For Windows 3 sebagai berikut:

**Tabel 4.** Data Forecasting Resault Exponential Smoothing a= 0,5

| Exponential Smoothing $a = 0.5$ |               |  |  |  |  |
|---------------------------------|---------------|--|--|--|--|
| Measure                         | Value         |  |  |  |  |
| Error Measures                  |               |  |  |  |  |
| Bias (Mean Error)               | -2.556,18     |  |  |  |  |
| MAD (Mean Absolute Deviation)   | 30.495,18     |  |  |  |  |
| MSE (Mean Squared Error)        | 1.432.175.000 |  |  |  |  |
| Standard Error (denom=n-2=20)   | 39.605,21     |  |  |  |  |
| MAPE (Mean Absolute Percent)    | 0,29          |  |  |  |  |
| Forecast Next period            | 146.705       |  |  |  |  |

Sumber: Pengolahan data

# 3. Linear Regression

Tabel dibawah ini menunjukkan data hasil perhitungan *Forecasting Resault* dari metode *Linear Regression* dengan nilai x=2 menggunakan QM For Windows 3 sebagai berikut:

Y = 147.335 - 2.023,75x

**Tabel 5.** Data Forecasting Resault Linear Regression x=2

| Linear Regression x=2              |               |                  |           |  |  |  |
|------------------------------------|---------------|------------------|-----------|--|--|--|
| Measure                            | Value         | Future<br>Period | Forecast  |  |  |  |
| Error Measures                     |               | 25               | 96.741,49 |  |  |  |
| Bias (Mean Error)                  | 0             | 26               | 94.717,74 |  |  |  |
| MAD (Mean Absolute Deviation)      | 37.481,19     | 27               | 92.694    |  |  |  |
| MSE (Mean Squared Error)           | 1.823.440.000 | 28               | 90.670,23 |  |  |  |
| Standard Error (denom=n-2=20)      | 44.600,53     | 29               | 88.646,48 |  |  |  |
| MAPE (Mean Absolute Percent)       | 0,38%         | 30               | 86.622,73 |  |  |  |
| Regression line                    |               | 31               | 84.598,98 |  |  |  |
| Demand (y)                         |               | 32               | 82.575,22 |  |  |  |
| -2023,75*time                      |               | 33               | 80.551,47 |  |  |  |
| Statistics                         |               | 34               | 78.527,72 |  |  |  |
| Correlation coefficient            | -0,31         | 35               | 76.503,96 |  |  |  |
| Coefficient of determination (r^2) | 0,1           | 36               | 74.480,21 |  |  |  |
| Forecast                           |               | 37               | 72.456,45 |  |  |  |
| x=2                                | 143.287,8     | 38               | 70.432,7  |  |  |  |

Sumber: Pengolahan data

Hasil pengolahan data pada QM For Windows menggunakan 3 metode untuk menentukan nilai akurasi peramalan dengan tujuan untuk mendapatkan hasil yang akurat dan dapat diandalkan untuk peramalan periode selanjutnya yaitu sebagai berikut:

Tabel 6. Hasil Pengolahan Data

| Metode         |        | MAD | MSE    | MAPE          | Next Periode |         |
|----------------|--------|-----|--------|---------------|--------------|---------|
|                |        | 2   | 30.474 | 1.454.447.000 | 0,29%        | 147.405 |
|                | rage M | 3   | 34.146 | 1.781.178.000 | 0,34%        | 147.212 |
|                |        | 4   | 36.618 | 1.993.695.000 | 0,37%        | 135.463 |
|                |        | 5   | 37.292 | 2.139.556.000 | 0,4%         | 125.337 |
| Moving Average |        | 6   | 39.046 | 2.285.505.000 | 0,44%        | 123.356 |
|                |        | 7   | 41.936 | 2.561.224.000 | 0,48%        | 126.480 |
|                |        | 8   | 43.395 | 2.625.784.000 | 0,5%         | 127.460 |
|                |        | 9   | 44.968 | 2.703.958.000 | 0,53%        | 119.836 |

Email: jurnal.jitsa@uts.ac.id

Halaman 179-185 E-ISSN : 2723-8687 P-ISSN : 2775-3158

| Exponential<br>Smoothing |   | 0,5 | 30.495 | 1.432.175.000 | 0,29% | 146.705 |
|--------------------------|---|-----|--------|---------------|-------|---------|
|                          | α | 0,6 | 29.945 | 1.374.768.000 | 0,28% | 151.762 |
|                          |   | 0,7 | 29.950 | 1.341.503.000 | 0,28% | 156.218 |
|                          |   | 0,8 | 29.932 | 1.328.504.000 | 0,27% | 160.269 |
|                          |   | 0,9 | 30.223 | 1.335.324.000 | 0,27% | 164.151 |
| Linear<br>Regression     | X | 2   | 37.481 | 1.823.440.000 | 0,38% | 96.741  |

**Sumber:** Pengolahan data

Dalam menentukan metode peramalan terbaik, yaitu dengan melihat dari besarnya nilai kesalahan pada metode tersebut. Semakin kecil nilai kesalahan dalam suatu metode maka hasil dari peramalan tersebut semakin baik. Dilihat dari nilai yang sudah diolah pada tabel di atas menggunakan POM QM For Windows 3 diketahui bahwa terdapat 3 metode dengan nilai MAD, MSE dan MAPE yang berbeda.

Berdasarkan tabel 6, nilai  $\alpha$ =0,8 karena memiliki tingkat kesalahan peramalan (*error*) yang paling kecil yaitu nilai MAD sebesar 29.931,92, nilai MSE sebesar 1.328.504.000 dan nilai MAPE sebesar 0,27% dengan nilai peramalan untuk periode selanjutnya adalah 160.269. Sehingga  $\alpha$ =0,8 terbaik untuk peramalan Okky Koko Drink Leci di PT. Triteguh Manunggalsejati.

#### IV. KESIMPULAN

Berdasarkan hasil penelitian, maka dapat ditarik kesimpulan yaitu, dalam menentukan pola data menggunakan aplikasi eviews dengan menggunakan uji *Augmented Dickey Fuller* (ADF) sehingga diperoleh pola data tren. Pola data tren menggunakan metode peramalan yaitu *Moving Average*, *Exponential Smoothing dan Linear Regression*. Dalam peramalan digunakan metode yang memiliki tingkat kesalahan yang paling kecil karena semakin kecil tingkat kesalahan perhitungan maka semakin akurat pula perhitungan tersebut. Berdasarkan hasil penelitian yang telah dilakukan dengan 3 metode dengan menggunakan QM POM Windows. Menggunakan konstanta pemulusan dengan nilai M=2-9 pada *Moving Average*, nilai  $\alpha$  yang digunakan pada *Exponnetial Smoothing* 0,1-0,9 dan  $\alpha$  x=2 pada *Linear Regression*. Metode yang memiliki tingkat kesalahan peramalan (*error*) yang paling kecil adalah metode *Exponential Smoothing* dengan nilai  $\alpha$ =0,8 dengan nilai MAD sebesar 29.931,92, nilai MSE sebesar 1.328.504.000, nilai MAPE sebesar 0,27% dan nilai peramalan untuk periode selanjutnya adalah 160.269. Sehingga metode *Exponential Smoothing* dengan nilai  $\alpha$ =0,8 terbaik untuk peramalkan Okky Koko Drink Leci di PT. XYZ.

## V. DAFTAR PUSTAKA

- Audinasyah, C. S., & Solehudin. (2024). Sistem Forecasting Perencanaan Produksi dengan Metode Single Exponential Smoothing Pada Home Industry Tempe Putera Sejahtera. *Jurnal EMT KITA*, 8(3), 845–853. https://doi.org/10.35870/emt.v8i3.2589
- Hermanto, K., Firda Utami, S., & Suarantalla, R. (2020). Peramalan Produksi Air Bersih oleh Perusahaan Daerah Air Minum Batulanteh Kabupaten Sumbawa Menggunakan Metode Regresi. *Jurnal Industri & Teknologi Samawa*, *I*(1), 9–3.
- Iswandari, R., Inke, L. A., & Hapsari, I. (2021). Analisis Peramalan Produksi Singkong dan Kelayakan Finansial Agroindustri Mocaf di Provinsi Lampung. *Jurnal Pro Bisnis*, *14*(1), 21–32.
- Jurjani, A. H., Yazid Achmad, A., Pratama, H. A., & Hendrawan, A. T. (2024). Analisis Peramalan Permintaan dalam Memaksimalkan Manajemen Rantai Pasok Menggunakan Metode Moving Average. *Jurnal Teknik Mesin, Industri, Elektro Dan Ilmu Komputer*, 2(4), 20–30. https://doi.org/10.61132/mars.v2i3.222
- Kusumawardani, N., Afandi, M. R., & Riani, L. P. (2019). Analisis Forecasting Demand dengan Metode Linear Exponential Smoothing (Studi pada Produk Batik Fendy, Klaten). *Jurnal Ekonomi & Pendidikan*, 16, 81–89.

JITSA Jurnal Industri&Teknologi Samawa

Email: jurnal.jitsa@uts.ac.id

Volume 6 (2) Agustus 2025 Halaman 179–185 E-ISSN: 2723-8687 P-ISSN: 2775-3158

Rodiah, D., & Yunita. (2022). Peramalan Produksi Pempek Dengan Metode Moving Average Dan Exponential Smoothing. *Jurnal Informatika Dan Rekayasa Komputer(JAKAKOM)*, 1(2), 131–140. https://doi.org/10.33998/jakakom.2022.2.1.48

- Ruspendi, Rumalah, & Adhistian P. (2024). Perencanaan Produksi Cairan Pembersih dengan Metode Rata-Rata Bergerak dan Pemulusan Eksponensial. *Jurnal Industri & Teknologi Samawa*, 5(1), 38–47
- Saptaria, L., & Nurhidayati. (2017). Analisis Peramalan Permintaan Produk Nata De Coco untuk Mendukung Perencanaan dan Pengendalian Produksi Dalam Supply Chain dengan Model CPFR (Collaborative Planning, Forecasting, and Replenishment). *Jurnal Nusantara Aplikasi Manajemen Bisnis*, *I*(2), 130–141. http://ojs.unpkediri.ac.id/index.php/manajemen/index
- Situmeang, S. J., Rohendi, D., & Okitasari, H. (2025). Analisis Kinerja Manajemen Persediaan dengan Metode Inventory Turnover pada Danone. *Jurnal Industri & Teknologi Samawa*, 6(1), 10–16.
- Wardah, S., & Iskandar. (2016). Analisis Peramalan Penjualan Produk Keripik Pisang Kemasan Bungkus (Studi Kasus: Home Industry Arwana Food Tembilahan). *Jurnal Teknik Industri*, *XI*(3), 135–142.