PERBANDINGAN METODE OPTIMASI PENENTUAN SENTROID AWAL PADA ALGORITMA K-MEANS MENGGUNAKAN ELBOW PSO DAN SSE
DOI:
https://doi.org/10.51401/jinteks.v6i4.4803Keywords:
K-Means, Elbow, PSO, SSE, DBIAbstract
The increasing volume and complexity of data present challenges in big data processing, particularly in manually identifying data patterns and relationships. In data mining, clustering methods such as the K-Means algorithm are widely used to group data based on similar characteristics. However, K-Means’ reliance on random initial centroid selection can yield suboptimal clustering results. This study aims to compare the evaluation results and iteration time of three optimization methods—Elbow, Particle Swarm Optimization (PSO), and Sum of Square Error (SSE)—on the K-Means algorithm. The dataset used is the Online Retail II dataset from the UCI Machine Learning Repository. The Davies-Bouldin Index (DBI) method is used as an evaluation tool to assess the validity of the formed clusters. Based on the analysis results, the Elbow and SSE optimization methods achieved a DBI score of 0.8500 with faster iteration times compared to PSO. Meanwhile, the PSO method provided the best DBI score of 0.7376, although it required significantly longer iteration time. The results of this study are expected to serve as a reference for selecting an appropriate optimization method for the K-Means algorithm based on time requirements and clustering evaluation outcomes.
References
J. Hutagalung, “Pemetaan Siswa Kelas Unggulan Menggunakan Algoritma K-Means Clustering,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 1, pp. 606–620, 2022, doi: 10.35957/jatisi.v9i1.1516.
S. M. Javidan, A. Banakar, K. A. Vakilian, and Y. Ampatzidis, “Diagnosis of grape leaf diseases using automatic K-means clustering and machine learning,” Smart Agric. Technol., vol. 3, no. June 2022, p. 100081, 2023, doi: 10.1016/j.atech.2022.100081.
L. ‘ Izzah and A. Jananto, “Penerapan Algoritma K-Means Clustering Untuk Perencanaan Kebutuhan Obat Di Klinik Citra Medika,” Progresif J. Ilm. Komput., vol. 18, no. 1, p. 69, 2022, doi: 10.35889/progresif.v18i1.769.
E. Ramadanti and M. Muslih, “Penerapan Data Mining Algoritma K-Means Clustering Pada Populasi Ayam Petelur Di Indonesia,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 7, no. 1, pp. 1–7, 2022, doi: 10.36341/rabit.v7i1.2155.
I. F. Ashari, R. Banjarnahor, D. R. Farida, S. P. Aisyah, A. P. Dewi, and N. Humaya, “Application of Data Mining with the K-Means Clustering Method and Davies Bouldin Index for Grouping IMDB Movies,” J. Appl. Informatics Comput., vol. 6, no. 1, pp. 07–15, 2022, doi: 10.30871/jaic.v6i1.3485.
Y. H. Syahputra and J. Hutagalung, “Superior Class to Improve Student Achievement Using the K-Means Algorithm,” SinkrOn, vol. 7, no. 3, pp. 891–899, 2022, doi: 10.33395/sinkron.v7i3.11458.
M. Orisa, “Optimasi Cluster pada Algoritma K-Means,” Pros. SENIATI, vol. 6, no. 2, pp. 430–437, 2022, doi: 10.36040/seniati.v6i2.5034.
M. Hamka and N. Ramdhoni, “K-Means Cluster Optimization for Potentiality Student Grouping Using Elbow Method,” AIP Conf. Proc., vol. 2578, no. November, 2022, doi: 10.1063/5.0108926.
G. Yao, Y. Wu, X. Huang, Q. Ma, and J. Du, “Clustering of Typical Wind Power Scenarios Based on K-Means Clustering Algorithm and Improved Artificial Bee Colony Algorithm,” IEEE Access, vol. 10, no. August, pp. 98752–98760, 2022, doi: 10.1109/ACCESS.2022.3203695.
T. M. Dista and F. F. Abdulloh, “Clustering Pengunjung Mall Menggunakan Metode K-Means dan Particle Swarm Optimization,” J. Media Inform. Budidarma, vol. 6, no. 3, p. 1339, 2022, doi: 10.30865/mib.v6i3.4172.
Y. Shima, R. A. Kadir, and F. H. Ali, “A Novel Approach to the Optimization of a Public Bus Schedule Using K-Means and a Genetic Algorithm,” IEEE Access, vol. 9, pp. 73365–73376, 2021, doi: 10.1109/ACCESS.2021.3080508.
T. Y. Wen and S. A. Mohd Aris, “Hybrid Approach of EEG Stress Level Classification Using K-Means Clustering and Support Vector Machine,” IEEE Access, vol. 10, pp. 18370–18379, 2022, doi: 10.1109/ACCESS.2022.3148380.
L. P. Refialy, H. Maitimu, and M. S. Pesulima, “Perbaikan Kinerja Clustering K-Means pada Data Ekonomi Nelayan dengan Perhitungan Sum of Square Error (SSE) dan Optimasi nilai K cluster,” Techno.Com, vol. 20, no. 2, pp. 321–329, 2021, doi: 10.33633/tc.v20i2.4572.
D. Lestari, A. C. Fauzan, and Harliana, “Penerapan Algoritma Pillar Untuk Optimasi Penentuan Titik Awal Centroid Pada Algoritma K-Means Clustering,” J. Inf. Systerm Infromatics Eng., vol. 6, no. 1, pp. 15–24, 2022.
X. Geng, Y. Mu, S. Mao, J. Ye, and L. Zhu, “An Improved K-Means Algorithm Based on Fuzzy Metrics,” IEEE Access, vol. 8, pp. 217416–217424, 2020, doi: 10.1109/ACCESS.2020.3040745.
I. Arfiani, H. Yuliansyah, and M. D. Suratin, “Implementasi Bee Colony Optimization Pada Pemilihan Centroid (Klaster Pusat) Dalam Algoritma K-Means,” Build. Informatics, Technol. Sci., vol. 3, no. 4, pp. 756–763, 2022, doi: 10.47065/bits.v3i4.1446.
M. Al Ghifari, W. Trisari, and H. Putri, “Clustering Courses Based On Student Grades Using K-Means Algorithm With Elbow Method For Centroid Determination,” vol. 8, no. 1, pp. 42–46, 2023.
T. Santoso, A. Darmawan, N. Sari, M. A. F. Syadza, E. C. B. Himawan, and W. A. Rahman, “Clusterization of Agroforestry Farmers using K-Means Cluster Algorithm and Elbow Method,” J. Sylva Lestari, vol. 11, no. January, pp. 107–122, 2023.
D. Amelia, T. N. Padilah, and A. Jamaludin, “Optimasi Algoritma K-Means Menggunakan Metode Elbow dalam Pengelompokan Penyakit Demam Berdarah Dengue (DBD) di Jawa Barat,” J. Ilm. Wahana Pendidik., vol. 8, no. 11, pp. 207–215, 2022.
A. Winarta and W. J. Kurniawan, “Optimasi cluster k-means menggunakan metode elbow pada data pengguna narkoba dengan pemrograman python,” J. Tek. Inform. Kaputama, vol. 5, no. 1, pp. 113–119, 2021.
T. P. Yoga, “Optimalisasi K-Means Berbasis Particle Swarm Optimization untuk Hasil Produksi Tanaman Sayuran di Indonesia,” vol. 17, 2023.
H. Harliana, R. M. Herdian Bhakti, O. Saeful Bachri, and F. Sofian Efendi, “Optimasi K-Means dengan Particle Swarm Optimization pada Pengelompokkan Daerah Stunting,” J. Ilm. Intech Inf. Technol. J. UMUS, vol. 3, no. 02, pp. 95–101, 2021, doi: 10.46772/intech.v3i02.457.

Published
How to Cite
Issue
Section
Copyright (c) 2024 Muhamad Rodi, Hendrik, Amir Bagja, M Nurul Wathani, Zaenul Amri

This work is licensed under a Creative Commons Attribution 4.0 International License.