INVESTIGATION OF SMAW WELDING PARAMETERS ON STST. 304 FOR OPTIMAL BENDING STRENGTH WITH TAGUCHI-GRA METHOD
DOI:
https://doi.org/10.36761/hexagon.v6i1.5029Keywords:
Bending test, GRA, Optimization, SMAW, TaguchiAbstract
Mechanical strength in weld joints is important in construction strength. This research takes the issue of SMAW weld joints strength when receiving bending loads on hopper products made from stainless steel 304. Two types of bending loads identified: root bend and face bend load. This research aims to obtain welding process parameters that are able to maximize the bending strength value of SMAW welding joints on stainless steel 304 material. Taguchi's experimental design uses current strength factors and electrode diameter, with an L8 (4121) Orthogonal Array. The novelty of this research is the use of response variables for root bend and face bend strength values which are optimized simultaneously. Multi-response optimization using Grey Relational Analysis method. The results of multi-response optimization are applied in confirmation tests to obtain actual results. The combination of a current strength of 65 A and an electrode diameter of 2.6 mm produces an optimal bending strength value with a desirability of 0.7475. These parameters produce actual face bend strength response of 1071.01 MPa (an increase of 5.38%) and a root bend strength of 1065.86 MPa (an increase of 17.36%).
References
Haider, S. F., Quazi, M. M., Bhatti, J., Bashir, M. N., & Ali, I. (2019). “Effect of shielded metal arc welding (SMAW) parameters on mechanical properties of low-carbon, mild and stainless-steel welded joints: a review”. Journal of Advances in Technology and Engineering Research, 5(5):191-198. DOI: 10.20474/jater-5.5.1.
Baghel, P.K. (2022). “Effect of SMAW process parameters on similar and dissimilar metal welds: an overview”. Heliyon, 8(12). https://doi.org/10.1016/j.heliyon.2022.e12161.
Srivastava, A., Shekhar, S., Rai, P., Nema, A., Pandey, A., Jha, R., & Ayub, A. (2016). “Analysis of Welding Joints and Processes”. International Journal of Computer Applications, 975-8887.
Munawar, Abbas, H., & Aminy, A. Y. (2018). “The effects of shielded metal arc welding (SMAW) welding on the mechanical characteristics with heating treatment in S45C steel”. IOP Publishing, Journal of Physics: Conference Series, 962(1). DOI: 10.1088/1742-6596/962/1/012063.
Shukla, A. A., Joshi, V. S., A. chel, & Shukla, B. A. (2018). “Analysis of shielded metal arc welding parameter on depth of penetration on AISI 1020 plates using response surface methodology”. Procedia manufacturing, 20:239-246. https://doi.org/10.1016/j.promfg.2018.02.035.
Widodo, E., Iswanto, I., Nugraha, M., & Karyanik, K. (2018). “Electric current effect on mechanical properties of SMAW-3G on the stainless steel AISI 304”. MATEC Web of Conferences, 197:12003. DOI: 10.1051/matecconf/201819712003.
Patil, U. S. & Kadam, M. S. (2020). “Multiobjective optimization of MMAW process parameters for joining stainless steel 304 with mild steel by using response surface methodology”. Materials Today: Proceedings, 26(2):305-310. DOI: 10.1016/j.matpr.2019.11.277.
Sumardiyanto, S. & Susilowati. S. E. (2019). “Effect of welding parameters on mechanical properties of low carbon steel API 5L shielded metal arc welds”. American Journal of Materials Science, 9(1):15-21. doi:10.5923/j.materials.20190901.03.
Patil, U. S. & Kadam, M. S. (2021). “Microstructural analysis of SMAW process for joining stainless steel 304 with mild steel 1018 and parametric optimization by using response surface methodology”. Materials Today: Proceedings, 44:1811–1815. DOI: 10.1016/j.matpr.2020.12.008.
Weerasekralage, L. S. S. K., Karunarathne, M., & Pathirana, S. D. (2019). “Optimization of shielded metal arc welding (SMAW) process for mild steel”.
Qazi, M. I., Akhtar, R., Abas, M., Khalid, Q. S., Babar, A. R., & Pruncu, C. I. (2020). “An integrated approach of GRA coupled with principal component analysis for multi-optimization of shielded metal arc welding (SMAW) process”. Materials, 13:3457. https://doi.org/10.3390/ma13163457.
Buchely, M. F., Colorado, H. A., & Jaramillo, H. E. (2015). “Effect of SMAW manufacturing process in high-cycle fatigue of AISI 304 base metal using AISI 308L filler metal”. Journal of Manufacturing Processes, 20(1):181-189. https://doi.org/10.1016/j.jmapro.2015.08.005.
Kchaou, Y., Haddar, N., Hénaff, G., Pelosin, V., & Elleuch, K. (2014). “Microstructural compositional and mechanical investigation of shielded metal arc welding (SMAW) welded superaustenitic UNS N08028 (Alloy 28) stainless steel”. Materials and Design, 63:278–285. DOI: 10.1016/j.matdes.2014.06.014.
Vellaichamy, L., & Paulraj, S. (2018). “Multi-response optimization of process parameters for GTAW process in dissimilar welding of Incoloy 800HT and P91 steel by using grey relational analysis”. IOP Conference Series: Materials Science and Engineering, 314(1). DOI: 10.1088/1757-899X/314/1/012023
Winarni, S., & Handoko, B. (2016). “Optimasi karakteristik kualitas lead-slag perisai radiasi beton menggunakan metode grey-taguchi desirability function”. Spektra: Jurnal Fisika dan Aplikasinya, 1(2):171-178. DOI: 10.21009/SPEKTRA.
Devi, Winarni, S., & Handoko, B. (2016). “Penerapan metode grey relational analysis dan PCA pada optimasi multirespon desain taguchi”. Seminar Pendidikan Matematika SPs UPI.
Winarni, S., Sunengsih, N., & Ginanjar, I. (2021). “Multi responses taguchi optimization using overlaid contour plot and desirability function”. Journal of Physics: Conference Series, 1776:012061. DOI: 10.1088/1742-6596/1776/1/012061.
Ismartaya, K., Bawono, B., & Anggoro, P. W. (2023). “Hardness and toughness investigation of ASSAB 705 steel by various tempering temperatures”. Key Engineering Materials, 951(6):11-20. https://doi.org/10.4028/p-qhlFk6
Nayakappa, P. A., Gaurish, W. A., & Mahesh, G. (2019). “Grey relation analysis methodology and its application”. Research Review International Journal of Multidisciplinary, 4(2):409-411. DOI: 10.5281/zenodo.2578088.
Published
Issue
Section
Copyright (c) 2025 Hexagon

This work is licensed under a Creative Commons Attribution 4.0 International License.